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Abstract
Imbalanced Time-Series Classification is a critical, yet challenging
task across a spectrum of real-world applications. Previous oversam-
pling and generative approaches primarily target the minority class
and often rely on static decision boundaries or similarity-based
heuristics. However, these methods overlook the underlying causal
factors that govern the distinction between majority and minority
classes, particularly in scenarios with ambiguous class boundaries.
As a result, the generated samples may fail to enhance class separa-
bility, thereby limiting improvements in classification performance.
To this end, we propose a CounterFactual Augmentation Minority
Generation (CFAMG) method based on generative models that
aims to discover the causal factors that determine different classes
from a causality perspective. Specifically, our method first utilizes
a disentangled classifier to distinguish between causal and non-
causal factors. Next, we perform counterfactual intervention by
replacing the causal factors of majority class samples with those
from minority class samples, creating an intervened latent repre-
sentation that reflects minority characteristics while preserving
essential structures. Finally, the trained minority class decoder gen-
erates counterfactual minority samples that resemble real minority
instances yet remain distinguishable from the original majority
class. Extensive experiments demonstrate that our method outper-
forms state-of-the-art methods in both univariate and multivariate
imbalanced time-series classification tasks. The code is published
at https://github.com/WangLei-CQU/CFAMG.
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1 Introduction
Imbalanced time-series classification (ITSC) is a significant chal-
lenge in machine learning and data mining, where the primary
issue arises from the imbalanced distribution of class labels. In this
paper, we focus on the binary classification setting of ITSC, aiming
to distinguish two highly imbalanced classes. In various practical
scenarios, including credit fraud detection [9], facial recognition
[4], and industrial fault detection [7], the minority class—typically
of heightened interest—remains significantly underrepresented rel-
ative to the majority class. Such an imbalance can bias models in
favor of the majority class, leading to suboptimal predictive per-
formance when it comes to the minority class, which in turn can
result in poor generalization and heavy misclassification costs [16].

Methods for addressing imbalanced learning can be broadly
categorized into data-based and algorithm-based approaches. Data-
based methods, such as undersampling, oversampling, and hybrid
techniques, adjust class distribution through resampling strategies,
either by removing excess majority class samples or generating
synthetic minority class samples [53]. In contrast, algorithm-based
methods [38] modify learning algorithms to better handle imbal-
anced data using techniques like cost-sensitive learning and ensem-
ble learning. This paper focuses on data-based methods. Beyond
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traditional sampling-based approaches, deep generative models
provide an alternative solution for addressing class imbalance [40].
These methods combine sampling strategies with generative mod-
els, allowing for the synthesis of minority class samples while em-
bedding discriminative information from the classification task. By
leveraging the power of deep generative models, these approaches
can capture complex data distributions and generate highly realistic
minority samples that preserve intricate structures [1].

Traditional oversampling methods, such as SMOTE and its vari-
ants [37], synthesize samples of the minority class by interpolat-
ing between existing samples and their nearest neighbors. These
methods aim to improve class balance and reduce overfitting by
creating more diverse synthetic samples, especially in regions such
as decision boundaries or areas with fewer minority samples [16].
However, when methods focus solely on augmenting data from the
minority class, they still inevitably lead to issues such as overfit-
ting and lack of diversity, ultimately reducing the generalization
performance of the classifier. One possible reason is that existing
oversampling methods primarily focus on the correlation matrix
such as distance and similarity between samples to generate new
minority class instances [5, 6, 19, 29, 36, 61], without considering the
causal factors that influence class labels. Consequently, correlation-
based oversampling may yield samples that closely resemble the
majority class, leading to sub-optimal performance, particularly
when class boundaries are ambiguous.

To address these challenges, we propose a dual disentangled
VAE framework to identify the latent causal factors that truly de-
termine the class labels. Since causal and non-causal factors are
entangled in the data, we first employ disentangled representation
learning methods [51] to separate the causal factors. Addition-
ally, we can leverage counterfactual thinking by intervening in
the causal factors of the majority class to generate counterfactual
minority class samples, thereby fully utilizing the information in
the majority class and closely approximating the real data distribu-
tion. Following this line of thought, we propose a CounterFactual
Augmentation Minority Generation (CFAMG) for handling the
ITSC task. Specifically, we first employ a temporal neural network
structure to encode both minority and majority class samples into
their respective latent representations. Each encoder is designed
with a dual-output head, where one head is responsible for extract-
ing the causal latent factors, while the other captures the non-causal
factors corresponding to each class. Next, we train a disentangled
classifier combined with mutual information regularization, which
enables the model to learn causal factor representations. Once the
disentanglement process is complete, we intervene on the causal
factors of the majority class by replacing them with the causal
factors from the minority class, and then generate counterfactual
minority class samples through the trained minority class decoder,
achieving more realistic and discriminative minority class instances
generation. The contributions of our work are as follows:

• We reveal the limitations of existing oversampling methods
and approach the ITSC problem from a causal perspective.
Specifically, our work is the first to develop counterfactual
generation for ITSC tasks.

• We utilize disentangled representation learning to uncover
the causal factors of both the majority and minority classes

in the latent space of the generative model, and intervene in
the causal factors of the majority class to generate realistic
and representative minority class samples.

• Extensive experiments conducted on several benchmark
datasets, along with analytical results, validate the effec-
tiveness and superiority of our approach.

2 Related Works
2.1 Oversampling Methods
Oversampling is a data-driven and effective method for addressing
data imbalance. Prominent examples include SMOTE [6] and its
various enhancements [2, 5, 32, 34, 61, 64], which typically gen-
erate synthetic samples based on K-nearest neighbors and class
decision boundaries. However, since these methods do not involve a
learning process, the generated samples can be highly similar when
the data are extremely imbalanced, which results in overfitting.
Additionally, while generating samples near the decision bound-
ary aims to improve classification accuracy by focusing on critical
samples, these methods may not always capture the underlying
factors driving the classification, leading to degraded performance.
Recent oversampling methods for ITSC, such as T-SMOTE [61],
employ an LSTM-based [41] auxiliary classifier to assign scores to
minority-class samples and select time subsequences with varying
lead lengths for generation. While this design aims to enhance tem-
poral representation, its effectiveness is highly dependent on the
quality of the classifier. Furthermore, BFGAN (Boundary-Focused
GAN) [29], as a generative model to address ITSC, also faces the
challenge of classifier performance and parameter selection. Simi-
larly, these methods overlook the underlying causal mechanisms
that fundamentally distinguish the majority and minority classes
when the decision boundary is ambiguous or difficult to model.
To address the aforementioned issue, we focus on learning the
causal factors that distinguish the minority and majority classes.
Additionally, we employ a classifier whose performance does not
heavily impact the process, encouraging the model to automatically
learn the causal representations of different classes in the latent
space. Leveraging these causal factors, we can generate realistic
and discriminative samples to effectively tackle the ITSC task.

2.2 CounterFactual Generation & Explanations
Causality-based techniques [22, 30, 54, 55, 58, 59] provide a new
perspective in data mining [31, 45–47, 60, 62, 63], among which
counterfactual generation is a key approach. It creates hypothet-
ical scenarios that differ from existing data to explore “what if”
questions [35, 43, 48–50]. This approach enhances a model’s causal
reasoning and robustness to unforeseen situations. It has proven
especially effective in improving interpretability in fields such as
computer vision [23–26] and natural language processing [13, 39].
In time series analysis, counterfactuals involve modifying histori-
cal data to understand how changes in certain variables or events
could alter the system’s evolution. Therefore, counterfactual expla-
nations have become one of the key research directions in this field
[15, 42, 44]. TimeTuner [18] integrates counterfactual explanations
to connect time series representations, features, and predictions, aid-
ing in the understanding of model behavior. CounTS [57] generates

2963



Mitigating Data Imbalance in Time Series Classification Based on Counterfactual Minority Samples Augmentation KDD ’25, August 3–7, 2025, Toronto, ON, Canada

counterfactual explanations via a variational Bayesian deep learn-
ing model, offering actionable insights while preserving prediction
accuracy. This approach reveals causal relationships and enhances
model interpretability by identifying key factors. While substan-
tial progress has been made in the application of counterfactual
explanations to this field, extending counterfactual techniques to
other tasks is equally critical for further advancing research in this
domain. Therefore, our work is the first to develop counterfactual
generation to for ITSC tasks, exploring how generating counterfac-
tual minority class samples from the majority class influence the
performance of ITSC models.

3 Preliminary
3.1 Problem Setup
Consider an imbalanced time series dataset 𝑋 = {𝑋𝑃 , 𝑋𝑁 }, where
𝑋𝑃 = {𝑋𝑃

𝑖
}𝑚
𝑖=1 and 𝑋𝑁 = {𝑋𝑁

𝑗
}𝑛
𝑗=1 represent the minority and ma-

jority class samples with corresponding labels 𝑦𝑃 = 1 and 𝑦𝑁 = 0,
respectively. Here,𝑚 ≪ 𝑛 highlights the significant class imbal-
ance, where the number of minority class samples is much smaller
than the number of majority class samples. Specifically, a minor-
ity sample 𝑋𝑃

𝑖
= {𝑥1

𝑖
, . . . , 𝑥𝑇

𝑖
} ∈ R𝑇×𝑑 is a sequence of data with

feature dimension 𝑑 and sequence length 𝑇 . The ITSC task focuses
on developing a model to predict the category of time-series data,
despite the inherent class imbalances.

3.2 Existing Oversampling Methods for ITSC
The existing oversampling techniques for ITSC task can be catego-
rized into the following approaches:
Covariance-basedmethods. These methods regularize the covari-
ance structure of the minority-class samples 𝑋𝑃 [5] by computing
their covariance matrix𝑊𝑃 :

𝑊𝑃 =
1
𝑚

𝑚∑︁
𝑖=1

(𝑥𝑃𝑖 − 𝑥𝑃 ) (𝑥𝑃𝑖 − 𝑥𝑃 )𝑇 ,

where 𝑥𝑃 is the mean of 𝑋𝑃 . Then, these method performs eigen
decomposition𝑊𝑃 = 𝑉𝐷𝑉𝑇 and adjusts the eigenvalues in 𝐷 to
obtain the regularized covariance𝑊 ∗

𝑃
= 𝑉𝐷∗𝑉𝑇 . Synthetic samples

are generated from 𝑥𝑃new ∼ N(𝑥𝑃 ,𝑊 ∗
𝑃
).

Clustering-based methods. These methods partition 𝑋𝑃 into
𝐾 clusters C1, C2, . . . , C𝐾 based on Density-Ratio Shared Nearest
Neighbor, each cluster C𝑖 has mean 𝜇𝑃

𝑖
and empirical covariance 𝑆𝑖

[64]. Define shrinkage covariance matrix 𝑆∗
𝑖
:

𝑆∗𝑖 = 𝛼𝐹 + (1 − 𝛼)𝑆𝑖 , 𝐹𝑖 𝑗 =

√︃
(𝑆𝑖 )𝑖𝑖 (𝑆𝑖 ) 𝑗 𝑗 ,

where 𝛼 is a regularization parameter. Synthetic samples are gener-
ated per cluster: 𝑥𝑃new ∼ N(𝜇𝑃

𝑖
, 𝑆∗
𝑖
).

Leading-time-based methods. These methods model temporal
dependencies in 𝑋𝑃 via LSTM to predict sample scores 𝑠𝑙

𝑖
[61] and

determines the maximum leading time 𝐿 by a spy-based technique.
For each time step 𝑙 , generate synthetic samples via interpolation:

𝑥𝑃new = 𝛼𝑥𝑙𝑖 + (1 − 𝛼)𝑥𝑙+1
𝑖 , 𝛼 ∼ B(𝑠𝑙𝑖 , 𝑠

𝑙+1
𝑖 ),

where B(·) is a Beta distribution.

3.3 Generative Model-Based Methods for ITSC
Generative models generate minority class samples by learning
the data distribution, addressing class imbalance while preserving
discriminative features. Boundary information is extracted by calcu-
lating the neighborhood density of each minority sample 𝑋𝑃

𝑖
using

𝑘-nearest neighbors and local outlier factor, assigning importance
labels 𝑣𝑖 = 1 for cautious samples and 𝑣𝑖 = 0 for certain samples [29].
The generator 𝐺 takes inputs (𝑧, 𝑐, 𝑣), where 𝑧 ∼ Uniform(−1, 1)𝑑
is noise, 𝑐 is the class label, and 𝑣 is the importance label, gener-
ating samples 𝐺 (𝑧, 𝑐, 𝑣). The discriminator 𝐷 classifies real 𝑋𝑃 or
generated samples and estimates their importance label. Finally, the
generator generates minority class samples to balance the dataset.

4 Methodology
4.1 Motivation
Existing methods for ITSC primarily model correlations between
minority andmajority classes using techniques like similarity-based
clustering or covariance modeling. However, these correlation-
driven approaches risk capturing spurious associations, introducing
bias in generated data and degrading classifier performance. Addi-
tionally, they focus solely on minority class characteristics while
overlooking fundamental distinctions between majority and minor-
ity classes. To address this, we adopt a causal perspective for ITSC
by disentangling causal factors that determine class labels from
non-causal elements. This enables the model to generate minority
samples with stronger discriminative power. Moreover, leveraging
majority class information enables our method to produce samples
with enhanced realism and quality.

4.2 Overall Model
Figure 1 (a) illustrates the objective of our proposed CFAMG, which
aims to disentangle the latent causal and non-causal factors and
intervene in the causal factors of the majority class to generate
counterfactual minority class samples. Specifically, for 𝑋𝑃 and 𝑋𝑁 ,
we can decompose it into two independent representations, cor-
responding to the causal factor 𝑧𝑃𝑐 , 𝑧𝑁𝑐 that determines the class,
and the non-causal factor 𝑧𝑃𝑛𝑐 , 𝑧𝑁𝑛𝑐 that is unrelated to the category.
Then, we intervene in the causal factor 𝑧𝑁𝑐 of samples from the ma-
jority class to generate counterfactual samples 𝑋𝑃

𝑐𝑓
corresponding

to the minority class label 𝑦𝑃 through the generative model.
As shown in Figure 1 (b), we use a dual VAE architecture to

represent latent factors and generate counterfactual samples. Unlike
traditional VAE [27], our framework separately encodes minority
and majority class samples into latent factors. It then performs
disentanglement and counterfactual intervention in the latent space,
followed by the generation of counterfactual minority class samples
through a minority decoder. Further details are provided in the
following sections.

4.3 Learning Disentangled Representation
In this section, we will introduce how to construct causal and non-
causal factors through the framework of Figure 1 (b) and how to
disentangle the two types of factors.
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Figure 1: (a) The goal of CFAMG: By intervening with the latent causal factors (𝑧𝑃𝑐 ) of the minority class (𝑋𝑃 ) on the latent causal
factors (𝑧𝑁𝑐 ) of the majority class (𝑋𝑁 ), counterfactual samples (𝑋𝑃

𝑐𝑓
) are generated with reversed labels (𝑦𝑁 → 𝑦𝑃 ). (b) The

framework of CFAMG: 𝑋𝑁 and 𝑋𝑃 are encoded by encoders 𝐸𝑃 and 𝐸𝑁 to obtain 𝑧𝑃𝑐 and 𝑧𝑁𝑐 , respectively. These causal factors
are further separated using disentangled classifiers 𝐷𝑃

𝑐𝑙𝑠
and 𝐷𝑁

𝑐𝑙𝑠
, along with mutual information regularization. Finally, the

intervention on the latent factors 𝑧𝑃
𝑐𝑓

is applied to generate 𝑋𝑃
𝑐𝑓

using the trained decoder 𝐷𝑃 . Details can be found in Section 4.

4.3.1 Causal and Non-causal Factor. To capture the latent causal
and non-causal representations of both minority and majority
classes, and to enable counterfactual intervention without flipping
the ground truth label, we need to learn the latent representations
of the minority and majority samples separately.

Given a batch, the minority and majority class samples are rep-
resented as 𝑋𝑃 ∈ R𝐵×𝑑×𝑇 and 𝑋𝑁 ∈ R𝐵×𝑑×𝑇 , respectively, where
𝐵 = min(𝑚, 𝐵), with 𝐵 being the batch size and𝑚 the number of
minority class samples. Furthermore, we design dual output heads
at the encoder’s input to obtain the representations of causal fac-
tors and non-causal factors. This design serves two purposes: first,
to distinguish different latent factors by obtaining diverse repre-
sentations through different output heads, and second, to aid in
disentangling the two types of factors. This can be expressed by

𝑧𝑃𝑐 , 𝑧
𝑃
𝑛𝑐 = 𝐸

𝑃 (𝑋𝑃 ;𝜃𝑃 ), 𝑧𝑁𝑐 , 𝑧
𝑁
𝑛𝑐 = 𝐸

𝑁 (𝑋𝑁 ;𝜃𝑁 ), (1)

where 𝜃𝑃 and 𝜃𝑁 are the parameters of encoders 𝐸𝑃 and 𝐸𝑁 ,
respectively. The encoders output causal and non-causal factors
for the minority and majority classes, i.e., 𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ∈ R𝐵×𝑘/2 and
𝑧𝑁𝑐 , 𝑧

𝑁
𝑛𝑐 ∈ R𝐵×𝑘/2, 𝑘 is the latent space dimension. Next, we will

construct an auxiliary classifier to assist in disentangling.

4.3.2 Disentangled Classifier. The disentangled classifier is de-
signed to decouple causal and non-causal factors, ensuring they
can be effectively utilized in counterfactual interventions and sam-
ple generation. To train the disentangled classifier, we combine
causal and non-causal factors in different ways and input them
into the classifier for training. Specifically, for the minority disen-
tangled classifier 𝐷𝑃

𝑐𝑙𝑠
, we construct two types of swaps: 1○ the

internal swap 𝑧𝑃𝑠𝑤𝑎𝑝 = Concatenate(𝑧𝑃𝑐 , 𝑧𝑃𝑟𝑝 ) ∈ R𝐵×𝑘 , where 𝑧𝑃𝑟𝑝

represents a randomly permuted 𝑧𝑃𝑛𝑐 ; 2○ the counterfactual swap
𝑧𝑃
𝑐𝑓

= Concatenate(𝑧𝑃𝑐 , 𝑧𝑁𝑛𝑐 ) ∈ R𝐵×𝑘 . Internal random swapping is
an enhancement strategy for disentangled learning, while external
swapping is a key step in counterfactual intervention. Thus, for
𝐷𝑃
𝑐𝑙𝑠

, our objective function is to minimize the following loss:

L𝑃cls =
⌈𝑚/𝐵⌉∑︁
𝑖=1

[𝐶𝐸
(
𝐷𝑃cls

(
{𝑧𝑃
𝑐𝑓
}𝑖
)
, 𝑦𝑃

)
+𝐶𝐸

(
𝐷𝑃cls

(
{𝑧𝑃swap}𝑖

)
, 𝑦𝑃

)
],

(2)
where 𝐶𝐸 denotes the cross-entropy loss. Similarly, for the major-
ity disentangled classifier 𝐷𝑁

𝑐𝑙𝑠
, the input construction method is

analogous to 𝐷𝑃
𝑐𝑙𝑠

, so the objective function for 𝐷𝑁
𝑐𝑙𝑠

is to minimize
the following loss:

L𝑁cls =
⌈𝑛/𝐵⌉∑︁
𝑖=1

[
𝐶𝐸

(
𝐷𝑁cls

(
{𝑧𝑁
𝑐𝑓
}𝑖
)
, 𝑦𝑁

)
+𝐶𝐸

(
𝐷𝑁cls

(
{𝑧𝑁swap}𝑖

)
, 𝑦𝑁

)]
.

(3)
Note that our disentangled classifier differs significantly from

those in the existing literature [29, 61] in both function and perfor-
mance. Firstly, the goal of the disentangled classifier is to separate
causal and non-causal factors. Consequently, it relies less on the
inherent performance of the classifier to some extent. Secondly, the
disentangled classifier is designed to be an overfitting classifier. For
different classes of samples, the classifier’s role is to ensure that the
latent factor representations remain within their original classes,
even after performing two types of swap operations. Therefore, in
the disentanglement task, the high memory capacity and accuracy
of a classifier that tends to overfit become advantageous. Finally,
since the disentangled classifier is less dependent on the classifier’s
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performance, its design is simpler compared to traditional classifier
models. A single fully connected layer serves as the disentangled
classifier in this work.

4.3.3 Mutual Information Regularization. To further ensure the
disentanglement of causal and non-causal factors, we introduce a
mutual information constraint on the latent representations of both
factors. Specifically, we compute the loss over a batch of samples,
ensuring that the disentanglement is enforced consistently across
different instances within each batch. Accordingly, we minimize
the following batch loss:

L𝑀𝐼 = L𝑃𝑀𝐼 + L𝑁𝑀𝐼 = 𝐼 (𝑧
𝑃
𝑐 , 𝑧

𝑃
𝑛𝑐 ) + 𝐼 (𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 ), (4)

where 𝐼 (·, ·) denotes the mutual information between two represen-
tations. The optimization strategy to minimize 𝐼 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) follows
the approach outlined in [8]. First, we derive an upper bound for
the mutual information 𝐼 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ), which can be expressed as:

𝐼 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 )

≤ E𝑃 (𝑧𝑃𝑐 ,𝑧𝑃𝑛𝑐 ) [log 𝑃 (𝑧𝑃𝑛𝑐 | 𝑧𝑃𝑐 )] − E𝑃 (𝑧𝑃𝑐 )𝑃 (𝑧𝑃𝑛𝑐 ) [log 𝑃 (𝑧𝑃𝑛𝑐 | 𝑧𝑃𝑐 )]

= 𝐼𝑃CLUB (𝑧
𝑃
𝑐 , 𝑧

𝑃
𝑛𝑐 ) .

(5)
Equality holds if and only if 𝑧𝑃𝑐 and 𝑧𝑃𝑛𝑐 are independent variables.
However, directly estimating the joint distribution 𝑃 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) and
the conditional distribution 𝑃 (𝑧𝑃𝑛𝑐 | 𝑧𝑃𝑐 ) is challenging. To address
this, following the approach in [52], we introduce a parameterized
variational distribution 𝑄 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ), which serves as an approxima-
tion to the true joint distribution. Hence, we define 𝑄 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) as:

𝑄 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) =
𝑄 (𝑧𝑃𝑐 )𝑄 (𝑧𝑃𝑛𝑐 )

𝑍𝛽
𝑒𝛾𝑃 (𝑧

𝑃
𝑐 ,𝑧

𝑃
𝑛𝑐 ) ,

𝑍𝛽 = E𝑄 (𝑧𝑃𝑐 )𝑄 (𝑧𝑃𝑛𝑐 ) [𝑒
𝛾𝑃 (𝑧𝑃𝑐 ,𝑧𝑃𝑛𝑐 ) ],

(6)

therefore, Eq (5) can be rewritten as:

𝐼𝑃CLUB (𝑧
𝑃
𝑐 , 𝑧

𝑃
𝑛𝑐 )

= E𝑄 (𝑧𝑃𝑐 ,𝑧𝑃𝑛𝑐 ) [𝛾𝑃 (𝑧
𝑃
𝑛𝑐 | 𝑧𝑃𝑐 )] − E𝑄 (𝑧𝑃𝑐 )𝑄 (𝑧𝑃𝑛𝑐 ) [𝛾𝑃 (𝑧

𝑃
𝑛𝑐 | 𝑧𝑃𝑐 )],

(7)

where 𝛾𝑃 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) is a learnable minority critic function, and 𝑍𝛽 is
the normalization constant ensuring that 𝑄 (𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) integrates to
1. Using this variational distribution, we can compute the expected
values and obtain the upper bound for the mutual information. To
ensure stability during optimization and prevent the upper bound
from becoming negative, we add an L2 regularization to constrain
the negative values of the upper bound. The final loss function L𝑃

𝑀𝐼
can be expressed as follows:

L𝑃𝑀𝐼 = 𝐼
𝑃
CLUB (𝑧

𝑃
𝑐 , 𝑧

𝑃
𝑛𝑐 ) + ∥𝐼𝑃CLUB (𝑧

𝑃
𝑐 , 𝑧

𝑃
𝑛𝑐 )∥2 . (8)

The optimization strategy for 𝐼 (𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 ) follows the same approach
as described above and can be expressed as follows:

𝐼 (𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 ) ≤ 𝐼𝑁CLUB (𝑧
𝑁
𝑐 , 𝑧

𝑁
𝑛𝑐 )

= E𝑄 (𝑧𝑁𝑐 ,𝑧𝑁𝑛𝑐 ) [𝛾𝑁 (𝑧𝑁𝑛𝑐 | 𝑧𝑁𝑐 )] − E𝑄 (𝑧𝑁𝑐 )𝑄 (𝑧𝑁𝑛𝑐 ) [𝛾𝑁 (𝑧𝑁𝑛𝑐 | 𝑧𝑁𝑐 )],
(9)

where 𝛾𝑁 (𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 ) is a learnable majority critic function. The L𝑁
𝑀𝐼

can be expressed as follows:

L𝑁𝑀𝐼 = 𝐼
𝑁
CLUB (𝑧

𝑁
𝑐 , 𝑧

𝑁
𝑛𝑐 ) + ∥𝐼𝑁CLUB (𝑧

𝑁
𝑐 , 𝑧

𝑁
𝑛𝑐 )∥2 . (10)

4.3.4 Counterfactual Intervention and Generation. The purpose of
counterfactual intervention is to observe the change in the outcome
variable by altering the value of the causal variable. One of the goals
of this study is to examine the impact of counterfactual samples on
time series imbalance classification, particularly when the decisive
features of majority samples are modified to convert their labels to
minority. After the model is fully trained and the disentanglement
of causal and non-causal factors for both minority and majority
classes is completed, we perform counterfactual intervention on
the latent causal factors 𝑧𝑁𝑐 of majority samples to generate coun-
terfactual samples. Specifically, the intervention is carried out by
replacing 𝑧𝑁𝑐 with the latent causal factors of minority samples (𝑧𝑃𝑐 ),
forming a joint representation 𝑍𝑃

𝑐𝑓
with 𝑧𝑁𝑛𝑐 . The counterfactual

minority samples are then generated using the minority decoder
𝐷𝑃 , expressed as:

𝑋𝑃
𝑐𝑓

= 𝐷𝑃 (𝑧𝑃
𝑐𝑓
). (11)

In theory, CFAMG can generate𝑚×𝑛 counterfactual samples. From
these, we select 𝑛 −𝑚 samples to complement the original minority
class samples, forming a balanced dataset.

4.4 Overall Objective Function
To ensure the learned latent factor representations faithfully capture
the true representations of both minority and majority classes, we
have the following objectives for a batch 𝐵 of 𝑋𝑃 and 𝑋𝑁 :

L𝑃gen = 𝐷KL (𝑞(𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 |𝑥𝑃 ) ∥ 𝑝 (𝑥𝑃 |𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 )),

L𝑁gen = 𝐷KL (𝑞(𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 |𝑥𝑁 ) ∥ 𝑝 (𝑥𝑁 |𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 )),
(12)

where 𝐷KL denotes the KL divergence, 𝑞 represents the learned
representation distribution, and 𝑝 represents the true represen-
tation distribution. Since the true distributions 𝑝 (𝑥𝑃 |𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 ) and
𝑝 (𝑥𝑁 |𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 ) cannot be directly calculated [11], we transform
them into the following objectives:

L𝑃gen = L𝑃Recon + L𝑃KL
= −E𝑧𝑃𝑐 ,𝑧𝑃𝑛𝑐∼𝑞𝐸𝑃 (𝑧𝑃𝑐 ,𝑧𝑃𝑛𝑐 |𝑥𝑃 ) log𝑝𝐷𝑃 (𝑥𝑃 |𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 )

+ 𝐷KL (𝑞(𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐 |𝑥𝑃 ) ∥ 𝑝 (𝑧 | 𝑁 (0, 𝐼 ))).

(13)

Following the same approach, we can denote the L𝑁gen as:

L𝑁gen = L𝑁Recon + L𝑁KL
= −E𝑧𝑁𝑐 ,𝑧𝑁𝑛𝑐∼𝑞𝐸𝑁 (𝑧𝑁𝑐 ,𝑧𝑁𝑛𝑐 |𝑥𝑁 ) log𝑝𝐷𝑁 (𝑥𝑁 |𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 )

+ 𝐷KL (𝑞(𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐 |𝑥𝑁 ) ∥ 𝑝 (𝑧 | 𝑁 (0, 𝐼 ))),

(14)

where 𝐸 and𝐷 represent the encoder and decoder, respectively. The
first term computes the reconstruction loss between the generated
samples and the original samples using MSE, while the second term
approximates the latent factor representation distribution using a
standard normal distribution. In summary, our overall objectives
are as follows:

L = (L𝑃gen + L𝑁gen) + 𝛼 · (L𝑃cls + L𝑁cls) + 𝛽 · L𝑀𝐼 , (15)

where 𝛼 and 𝛽 are a balancing factor. Unless otherwise specified, 𝛼
and 𝛽 are set to 1 in this paper.
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Table 1: Experimental results on the average performance of MLP, LSTM, and ResNet classifiers across 53 UCR and UEA datasets.
The best performances are highlighted in bold.

Classifier MLP LSTM ResNet

Methods F1 ↑ G-Means ↑ AUC ↑ F1 ↑ G-Means ↑ AUC ↑ F1 ↑ G-Means ↑ AUC ↑
None 0.2851 0.3307 0.7594 0.1714 0.1416 0.5852 0.3689 0.3828 0.7695
SMOTE 0.5616 0.6578 0.8096 0.3540 0.3838 0.6362 0.5252 0.6007 0.7888

BL-SMOTE 0.5316 0.6292 0.7953 0.3356 0.3924 0.6511 0.5074 0.5841 0.7808
MWMOTE 0.5485 0.6484 0.8026 0.3773 0.4140 0.6103 0.5213 0.5990 0.7840
ADASYN 0.5507 0.6607 0.8207 0.3928 0.4104 0.6387 0.5547 0.6237 0.8007
MBS 0.5165 0.5924 0.8052 0.3435 0.3788 0.6412 0.3785 0.4280 0.7757
INOS 0.5524 0.6413 0.7994 0.3771 0.3998 0.5932 0.4758 0.5497 0.7829
OHIT 0.4773 0.5773 0.7577 0.3240 0.3672 0.5995 0.3638 0.4080 0.7520

T-SMOTE 0.4807 0.5469 0.7853 0.3273 0.3493 0.6280 0.4783 0.5414 0.7825
BFGAN 0.4969 0.5682 0.8134 0.2473 0.2506 0.5773 0.3309 0.3740 0.7619
CSMOTE 0.4391 0.5395 0.7625 0.2099 0.2855 0.5584 0.3319 0.3924 0.7500
TCGAN 0.4985 0.5457 0.7787 0.3047 0.3075 0.6038 0.3482 0.4058 0.7502
I-GAN 0.5458 0.6349 0.7885 0.3398 0.3732 0.6344 0.4030 0.4567 0.7716

H-SMOTE 0.5239 0.6337 0.7751 0.2956 0.3774 0.6191 0.4809 0.5677 0.7557
CFAMG 0.6963 0.7839 0.8751 0.5743 0.6896 0.7787 0.6593 0.7379 0.8592

5 Experiments
5.1 Experimental Setups
5.1.1 Datasets. In our experiments, we used 53 time series datasets
sourced from the UCR and UEA time series repository 1 to evaluate
the performance of the proposed method. To construct imbalanced
datasets, the class(es) with the fewest samples were designated as
the minority class, and the remaining classes were treated as the
majority class for dataset construction. For datasets with a low
imbalance ratio (IR) (less than 2), we chose to discard a portion of
the minority class samples, but no fewer than 10 samples. After
balancing the training set, we trained classification models using
this balanced training set and evaluated the quality of the generated
data with the original test set. Dataset statistics are provided in the
Appendix Table 6.

5.1.2 Competitors. To evaluate the performance of CFAMG, we
compared it against 13 classical oversampling methods, the latest
ITSC method based on sampling and deep generation methods:
None, SMOTE [6], Borderline-SMOTE (BL-SMOTE) [17], MWMOTE
[2],ADASYN [19],MBS [33], INOS [5],OHIT [64], T-SMOTE [61], BF-
GAN [29], CSMOTE [34], TCGAN [21], I-GAN [36] and H-SMOTE
[32]. The None represents training and testing with the original
data. Note that methods such as SMOTE, Borderline-SMOTE, MW-
MOTE, ADASYN, MBS, OHIT, and H-SMOTE require the input to
be explicitly reshaped into one-dimensional form.

5.1.3 Evaluation Metrics. In our experiments, we used three com-
mon metrics in the field of imbalanced learning: F1 Score [56], G-
mean [3], and AUC [12], to evaluate the model’s performance in
handling imbalanced data, avoiding the misleading nature of accu-
racy. The F1 Score is the harmonic mean of precision and recall,
reflecting the model’s ability to distinguish both minority and ma-
jority classes. G-Mean measures the geometric mean of sensitivity
1https://www.timeseriesclassification.com/dataset.php

and specificity, ensuring balanced performance across classes. It is

computed as: 𝐺-𝑀𝑒𝑎𝑛 =

√︃
𝑇𝑃

𝑇𝑃+𝐹𝑁 × 𝑇𝑁
𝑇𝑁+𝐹𝑃 . AUC represents the

Area Under the ROC Curve, assessing the model’s overall perfor-
mance by plotting the True Positive Rate against the False Positive
Rate. Moreover, MMD [14] and FID [20] are employed to assess
the quality of the generated data. We use the MMD metric with
multi-bandwidth RBF kernels to measure the distributional differ-
ence between generated minority and real minority data. A lower
MMD indicates a closer match to the real distribution. Since FID
is commonly used for image quality assessment, we followed the
FID setup from the literature [28], using a pretrained FCN model
to extract features from real and generated time series, and then
calculating the mean and covariance of these features. Finally, by
computing the Frechet distance between the feature distributions,
a lower FID indicates higher generation quality.

5.1.4 Classifier Specification. In our experiments, we utilized the
proposed method and the comparative methods to achieve balanced
datasets, which were then evaluated using a consistent classifier.
Specifically, we employed the MLP, LSTM, and ResNet classifiers for
this assessment. TheMLP classifier consists of three fully connected
layers with configurations [500, 500, 500], while the LSTM classifier
uses a single layer with default parameters. The ResNet classifier
is composed of three residual blocks with varying kernel sizes (7,
5, 3), followed by adaptive average pooling and a fully connected
layer for classification.

5.2 Experimental Results
5.2.1 Experimental Results on All Datasets. Table 1 presents a com-
parison of the average performance of CFAMG and baseline meth-
ods on the 53 constructed imbalanced datasets. The baseline meth-
ods are divided into two categories: non-temporal oversampling
methods and temporal sampling methods.
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Table 2: Performance of different imbalance rates on the MPOC dataset using MLP classifier.

IR (#Minority) 5.54 (70, Original) 7.76 (50) 12.93 (30) 38.8 (10) 77.6 (5)

Methods F1 ↑ G-Means ↑ AUC ↑ F1 ↑ G-Means ↑ AUC ↑ F1 ↑ G-Means ↑ AUC ↑ F1 ↑ G-Means ↑ AUC ↑ F1 ↑ G-Means ↑ AUC ↑
SMOTE 0.7339 0.7680 0.8644 0.6843 0.7276 0.8473 0.6069 0.6649 0.8152 0.4698 0.5568 0.7895 0.2802 0.4031 0.8088

BL-SMOTE 0.7104 0.7475 0.8721 0.6732 0.7174 0.8694 0.5415 0.6101 0.8687 0.5273 0.6007 0.8076 0.1918 0.3197 0.7954
ADASYN 0.7335 0.7681 0.8555 0.6903 0.7324 0.8475 0.5703 0.6359 0.8138 0.4594 0.5485 0.7875 0.2734 0.3975 0.8040
MWMOTE 0.7450 0.7778 0.8649 0.6981 0.7386 0.8498 0.6032 0.6616 0.8380 0.5070 0.5850 0.8238 0.2543 0.3812 0.8047

MBS 0.6743 0.7171 0.8930 0.6358 0.6854 0.8807 0.5658 0.6298 0.8498 0.4725 0.5577 0.8519 0.2240 0.3532 0.7760
INOS 0.7408 0.7725 0.8899 0.7080 0.7462 0.8751 0.6597 0.7059 0.8560 0.4757 0.5605 0.8010 0.3771 0.4817 0.8382
OHIT 0.7412 0.7739 0.8644 0.7104 0.7479 0.8522 0.6050 0.6624 0.8354 0.4112 0.5100 0.7783 0.2506 0.3782 0.7171

T-SMOTE 0.4205 0.5077 0.8429 0.1781 0.2828 0.8134 0.0646 0.1708 0.7959 0.0159 0.0894 0.6977 0.0143 0.0805 0.6380
BFGAN 0.3821 0.4812 0.8688 0.3616 0.4652 0.8740 0.1292 0.2613 0.7998 0.0675 0.1845 0.7345 0.0674 0.1826 0.7354
CSMOTE 0.1194 0.2522 0.8060 0.4699 0.5552 0.8692 0.3026 0.4238 0.8224 0.1061 0.2366 0.7785 0.0809 0.2022 0.8087
TCGAN 0.6237 0.6750 0.8838 0.4699 0.5552 0.8827 0.6735 0.7156 0.8638 0.4125 0.5107 0.8676 0.1113 0.2405 0.6947
I-GAN 0.6837 0.7232 0.8693 0.5349 0.6048 0.8972 0.4074 0.5076 0.8944 0.0000 0.0000 0.4005 0.0000 0.0000 0.0000

H-SMOTE 0.6977 0.7388 0.8631 0.7168 0.7549 0.8578 0.5550 0.6251 0.8087 0.0469 0.1549 0.6715 0.0739 0.1958 0.7867
CFAMG 0.7464 0.7755 0.8954 0.7212 0.7557 0.8893 0.7065 0.7422 0.8807 0.5926 0.6530 0.8222 0.5027 0.5843 0.7755
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Figure 2: Parameter sensitivity analysis on the MP dataset using MLP classifier.

Result analysis. For non-temporal oversamplingmethods, CFAMG
shows an average performance improvement of 24.0%, 18.6%, and
6.6% over the best non-temporal sampling method in the MLP clas-
sifier, 46.2%, 66.6% and 19.6% in the LSTM classifier, and 18.86%,
18.31%, and 7.31% in the ResNet classifier. For temporal oversam-
pling methods, CFAMG outperforms the best method in this cate-
gory by 26.0%, 22.2%, and 9.5% in the MLP classifier, 52.3%, 72.5%,
and 24.0% in the LSTM classifier, and 37.84%, 34.24%, and 9.74% in
the ResNet classifier. The experimental results show that CFAMG
outperforms the latest baseline methods across all three classifiers,
with particularly significant improvements in F1 score and G-Means.
This is attributed to CFAMG’s use of causal factors to generate dis-
tinguishable minority class samples. In addition, its consistently
strong performance across multiple baseline classifiers suggests
robustness to the choice of classifier.

5.2.2 Experimental Results on Different Imbalance Ratios. We con-
ducted performance comparisons on the MiddlePhalanxOutlineCor-
rect (MPOC) dataset using different IRs, where the IRs were gen-
erated by selecting 70, 50, 30, 10, and 5 minority class samples,

respectively. As shown in Table 2, the proposed method demon-
strates a more evident advantage in terms of F1 and G-Means as
the IR increases, although its AUC is slightly lower than that of
the baseline methods at higher IRs. The improvements in F1 and
G-Means are primarily due to CFAMG’s ability to leverage majority
class information to generate distinguishable minority class sam-
ples. While the proximity of these samples to the decision bound-
ary—resulting from majority class influence—may lead to a slight
decrease in AUC, their high separability is still evident, validating
the overall effectiveness of the generated data.

5.2.3 Training Runtime, Convergence, and Parameter Sensitivity.
Training runtime. Table 4 compares the training time of CFAMG
and baselines on 9 high-IR datasets (same as in the ablation study).
The "SMOTE & variants" reports the average runtime of SMOTE,
BL-SMOTE, ADASYN, and MWMOTE. CFAMG shows markedly
better efficiency than generation-based oversampling methods like
BFGAN, I-GAN, and TCGAN.
Convergence. Figure 3 illustrates the convergence of the total
loss and disentangled classifier loss for the majority and minority
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Table 3: Ablation studies on different generating factors and the two disentangling components. The best results are bolded.

Metrics RS NATOPS FW GMAD3 MI MP PAP PPTW Worms Average

𝑅𝑎𝑛𝑑𝑜𝑚

F1 ↑ 0.9254 0.6265 0.2326 0.3333 0.7027 0.6437 0.0800 0.0000 0.4444 0.4432
G-Means ↑ 0.9467 0.8430 0.3925 0.4472 0.8660 0.9433 0.2212 0.0000 0.6757 0.5928
AUC ↑ 0.9980 0.9142 0.6740 0.7675 0.9790 0.9638 0.8593 0.9458 0.7627 0.8738

Only 𝑧𝑝𝑐
F1 ↑ 0.9552 0.6761 0.2727 0.1818 0.8065 0.6942 0.2941 0.0000 0.6667 0.5053

G-Means ↑ 0.9660 0.8422 0.4299 0.3162 0.8557 0.9494 0.4879 0.0000 0.7790 0.6251
AUC ↑ 0.9988 0.9298 0.7384 0.8358 0.9879 0.9832 0.8577 0.9606 0.8714 0.9071

𝑧𝑃𝑐 + 𝑅𝑎𝑛𝑑𝑜𝑚
F1 ↑ 0.9697 0.6552 0.2727 0.4444 0.7692 0.6307 0.2778 0.0000 0.7143 0.5260

G-Means ↑ 0.9701 0.8556 0.4299 0.6831 0.9133 0.9374 0.4852 0.0000 0.7848 0.6733
AUC ↑ 0.9985 0.9473 0.7306 0.8258 0.9859 0.9843 0.8529 0.9581 0.8496 0.9037

𝑧𝑃𝑐 + 𝑧𝑃𝑟𝑝
F1 ↑ 0.9851 0.6866 0.2632 0.2667 0.8475 0.6192 0.2286 0.0000 0.6667 0.5071

G-Means ↑ 0.9852 0.8337 0.3948 0.4416 0.9146 0.9377 0.4339 0.0000 0.7790 0.6356
AUC ↑ 0.9995 0.9411 0.7456 0.8200 0.9872 0.9826 0.8511 0.9631 0.8696 0.9066

𝑤/𝑀𝐼
F1 ↑ 0.9706 0.6667 0.2727 0.4444 0.8060 0.6792 0.4000 0.3333 0.5882 0.5735

G-Means ↑ 0.9810 0.8214 0.4299 0.7141 0.9172 0.9442 0.6119 0.7019 0.7673 0.7654
AUC ↑ 0.9998 0.9356 0.7697 0.8408 0.9887 0.9819 0.8598 0.9581 0.8370 0.9079

𝑤/𝐷𝐶
F1 ↑ 0.9565 0.7105 0.2917 0.5000 0.7937 0.6942 0.3636 0.3333 0.5000 0.5715

G-Means ↑ 0.9768 0.8866 0.4627 0.6922 0.9146 0.9494 0.6049 0.7019 0.7494 0.7709
AUC ↑ 0.9990 0.9382 0.7625 0.8125 0.9889 0.9837 0.8705 0.9729 0.8315 0.9066

CFAMG
F1 ↑ 0.9855 0.7105 0.2979 0.5556 0.8406 0.7706 0.3784 0.4000 0.6667 0.6229

G-Means ↑ 0.9958 0.8866 0.4633 0.7517 0.9197 0.9632 0.5757 0.7036 0.8076 0.7852
AUC ↑ 1.0000 0.9518 0.7848 0.8792 0.9910 0.9920 0.8734 0.9680 0.8678 0.9231

Table 4: Average time consumed in the 9 high-IR univariate and multivariate datasets.

SMOTE & Variants MBS INOS OHIT T-SMOTE BFGAN CSMOTE TCGAN I-GAN H-SMOTE CFAMG

Time (s) 0.12 94.95 311.11 1.28 1.63 78.43 11.86 30.22 1051.69 0.03 16.94

classes on the FiftyWords, demonstrating that CFAMG consistently
achieves convergence during both training phases, which validates
the stability and effectiveness of the proposed learning process.
Furthermore, as training progresses, the MSE of the causal and
non-causal factors for both majority and minority classes increases,
indicating that the two types of factors are being disentangled.
Parameter sensitivity. Figure 2 illustrates the sensitivity of the
parameters 𝛼 and 𝛽 evaluated over the set {0.01, 0.1, 1, 10, 100} on
the MelbournePedestrian (MP) dataset. Experimental results show
CFAMG performs best when 𝛼 = 𝛽 = 1, a trend consistent across
various datasets; this setting is therefore selected as the default.

5.2.4 Results on Generation Quality. To validate the quality of the
data generated by CFAMG, we compare our method with CSMOTE
and other generative baselines (VAE-based and GAN-based). Table
5 presents the results on the FiftyWords (FW), GestureMidAirD3
(GMAD3), and MelbournePedestrian (MP) datasets. Our method
achieves the second-best MMD score and the best FID score (while
I-GAN attains the best MMD, it suffers from a substantially higher
FID). These results demonstrate that CFAMG generates minority
class samples that closely approximate the real data distribution,
while maintaining high diversity among generated samples.

5.3 Ablation Studies
In the ablation study, we used 9 high-IR univariate and multivariate
datasets, including FiftyWords (FW), GestureMidAirD3 (GMAD3),
MedicalImage (MI), MelbournePedestrian (MP), PigAirwayPressure
(PAP), ProximalPhalanxTW (PPTW), RacketSports (RS), NATOPS and
Worms, with the lowest IR of 3.44, the highest IR of 36.5, and an
average IR of 15.43.

5.3.1 Ablation Study for Different Generating Factors. To investi-
gate the contribution of minority class causal factors to classifica-
tion performance, we design several generation configurations as
follows: a) 𝑅𝑎𝑛𝑑𝑜𝑚 represents the use of random factors, which
causes the model to degrade to a standard VAEmodel; b) only causal
factors from the minority class (𝑧𝑃𝑐 ) are used, with no additional
auxiliary information; c) 𝑧𝑃𝑐 is combined with random information,
where the random information serves as non-causal data and noise;
d) 𝑧𝑃𝑐 is combined with the randomly permuted non-causal factors
of the minority class (𝑧𝑃𝑟𝑝 ), using deterministic, underrepresented
non-causal information and noise.
Result analysis. Based on the results in Table 3, the following
observations can be made: 1) In case b), compared to case a), perfor-
mance improved by 11.85%, 4.68%, and 3.37% across three metrics,
indicating that using causal factors to generate samples is more

2969



Mitigating Data Imbalance in Time Series Classification Based on Counterfactual Minority Samples Augmentation KDD ’25, August 3–7, 2025, Toronto, ON, Canada

(a) Minority (b) Majority

Figure 3: Convergence of total loss, disentangled classifier loss, and MSE of causal and non-causal factors (𝑧𝑐 , 𝑧𝑛𝑐 ) in the latent
space for majority and minority classes on the FiftyWords dataset.

Table 5: Experimental results on the assessment of generation quality with MMD and FID.

Datasets FW GMAD3 MP Average

Methods MMD ↓ FID ↓ MMD ↓ FID ↓ MMD ↓ FID ↓ MMD ↓ FID ↓
CSMOTE 0.256 40.399 1.695 184.523 0.027 8.768 0.659 77.897
BFGAN 1.565 560.608 0.403 662.033 1.055 151.850 1.008 458.164
TCGAN 0.145 3.341 0.330 35.913 0.630 58.510 0.368 32.588
I-GAN 0.043 332.632 0.067 171.727 < 0.001 0.260 0.055 168.206
VAE 0.638 32.536 0.443 66.950 0.017 1.059 0.366 33.515

CFAMG 0.510 15.426 0.111 14.622 < 0.001 0.083 0.311 10.044

beneficial for classification; 2) When auxiliary information is used,
the model performance improved on average by 2% in F1 score
and 4% in G-Means, demonstrating that additional auxiliary in-
formation can enhance classification performance; 3) When using
random auxiliary information, performance improved by 3.21% in
F1 score and 5.14% in G-Means compared to using 𝑧𝑃𝑟𝑝 , suggesting
that under imbalanced data, the randommechanism provides richer
non-causal information than 𝑧𝑃𝑟𝑝 ; 4) When majority class samples
were used as counterfactual augmented minority class samples, per-
formance improved by 15.97%, 14.51%, and 1.97% across the three
metrics compared to the random mechanism. The above results in-
dicate that causal factors can improve the classifier’s performance,
and that counterfactual minority samples generated using majority
class samples are more effective for producing high-quality samples
that enhance classification performance.

5.3.2 Ablaiton Study for Two Disentangling Components. To ver-
ify the impact of disentangled representations on classification
performance, we removed the disentangling classifier (DC) and
mutual information regularizer to observe the changes in classifica-
tion performance. When no disentangling component is used, the
model degrades to a standard VAE model. Therefore, when either
disentangling component is used, classification performance im-
proved by 24.67%, 25.4%, and 3.44% across the three metrics. When

both disentangling components were used, classification perfor-
mance improved by 7.715%, 1.965%, and 1.615% across the three
metrics compared to using each disentangling component individu-
ally, validating the effectiveness of both disentangling components
in separating causal factors.

6 Conclusion
In this paper, we propose a novel counterfactual augmented frame-
work for imbalance time series classification, termedCFAMG,which
focuses on leveraging the differences between majority and mi-
nority class samples from a causality perspective to balance the
training dataset. Extensive experiments validate the effectiveness
of utilizing causal factors and majority class information for ITSC
tasks. The limitation of CFAMG remains an indirect causal mod-
eling approach for time series data, which may limit its ability to
capture fine-grained causal relationships. Future work will focus
on identifying and modeling time-varying causal factors.
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Appendix
A Experiment Supplementary
For transparency and reproducibility, we provide the implementa-
tion links for all the baseline methods used in our experiments. The
code repositories are publicly available and listed as follows:

• SMOTE [6], BL-SMOTE [17], ADASYN [19], MWMOTE
[2]: https://github.com/analyticalmindsltd/smote_variants.

• MBS [33]: https://github.com/b10071007/Model-Based-Synthetic-
Sampling.

• INOS [5]: The method can be implemented using the OSTSC
package [10].

• OHIT [64]: https://github.com/zhutuanfei/OHIT.
• T-SMOTE [61]: The results presented are based on our re-
production of the original findings of T-SMOTE.

• BFGAN [29]: https://github.com/koogi303/Oversampling.

Algorithm 1 CFAMG Algorithm

1: Input: Minority data {𝑋𝑃 , 𝑦𝑃 }, Majority data {𝑋𝑁 , 𝑦𝑁 }, hy-
perparameters and initialized CFAMG parameters.

2: Output: Counterfactual minority samples 𝑋𝑃
𝑐𝑓
.

3: \* Training *\
4: while until convergence do
5: for batch {𝑋𝑃

𝑖
, 𝑦𝑃
𝑖
}, {𝑋𝑁

𝑖
, 𝑦𝑁
𝑖
} do

6: \* Minority training *\
7: Encoder {𝑋𝑃

𝑖
, 𝑦𝑃
𝑖
} to 𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐

8: Reconstruct 𝑋𝑃
𝑖
, calculate loss according to Eq. (13) and

(8), update the parameters of 𝐸𝑃 , 𝐷𝑃 .
9: \* Majority training *\
10: Encoder {𝑋𝑁

𝑖
, 𝑦𝑁
𝑖
} to 𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐

11: Reconstruct𝑋𝑁
𝑖
, calculate loss according to Eq. (14) and

(10), update the parameters of 𝐸𝑁 , 𝐷𝑁 .
12: \* Disentangled classifier training *\
13: Shuffle 𝑧𝑃𝑛𝑐 , 𝑧𝑁𝑛𝑐 to get 𝑧𝑃𝑠𝑤𝑎𝑝 , 𝑧𝑃𝑐𝑓
14: Calculate classifier loss according to Eq. (2) and (3),

update the parameters of 𝐷𝑃
𝑐𝑙𝑠
, 𝐷𝑁
𝑐𝑙𝑠

.
15: end for
16: end while
17: \* Generating *\
18: for batch {𝑋𝑃

𝑖
, 𝑦𝑃
𝑖
} in minority set do

19: Encoder {𝑋𝑃
𝑖
, 𝑦𝑃
𝑖
} to 𝑧𝑃𝑐 , 𝑧𝑃𝑛𝑐

20: for batch {𝑋𝑁
𝑖
, 𝑦𝑁
𝑖
} in majority set do

21: Encoder {𝑋𝑁
𝑖
, 𝑦𝑁
𝑖
} to 𝑧𝑁𝑐 , 𝑧𝑁𝑛𝑐

22: Generate 𝑋𝑃
𝑐𝑓

from 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑧𝑃𝑐 , 𝑧𝑁𝑛𝑐 )
23: end for
24: end for

• CSMOTE [34]: https://github.com/liupin-source/csmote.
• TCGAN [21]: https://bitbucket.org/Lynn1/tcgan.
• I-GAN [36]: https://github.com/flowerbloom000/I-GAN.
• H-SMOTE [32]: https://github.com/Lawrence98/H-SMOTE-
FAM.git.

• CFAMG (Ours): https://github.com/WangLei-CQU/CFAMG.

B Implementation Details of CFAMG
The proposed model is an extension of the basic VAE model. During
training, a separate VAEmodel is used for the minority and negative
class samples. The pseudo-codes of CFAMG covering training and
generating phases are summarized in Algorithm 1. The latent
representation dimension is set to 64, with 200 iterations, a learning
rate of 1𝑒 − 3, and weight decay of 1𝑒 − 4. The proposed method has
model-independent properties, meaning that the VAE encoder and
decoder can be replaced with any network. In this work, the encoder
employs a three-layer MLP with layer dimensions of [32, 64, 128]
and corresponding dropout rates of [0.1, 0.1, 0.2]. The decoder is
implemented as a single-layer MLP with a hidden dimension of 128
and a dropout rate of 0.1. All the experiments were implemented
using Python software and executed on an i7-12700 CPU with 24GB
of RAM and NVIDIA GeForce 4060.
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Table 6: Univariate and multivariate datasets characteristics for training and test set. IR is the imbalance ratio.

Type Dataset Dimensions Minority Class #Length Training Test
#Maj #Min IR #Maj #Min IR

Univariate ACSF1 1 1 1460 90 10 9.00 90 10 9.00
Multivariate ArticularyWordRecognition 9 25.0 144 264 11 24.00 288 12 24.00
Univariate Car 1 3 577 49 11 4.45 41 19 2.16
Univariate Computers 1 2 720 125 41 3.05 125 125 1.00
Univariate DodgerLoopDay 1 5, 2 288 51 16 3.19 56 21 2.67
Univariate Earthquakes 1 1 512 264 58 4.55 104 35 2.97
Univariate ECG5000 1 1 140 208 97 2.14 1873 2627 0.71
Univariate EthanolLevel 1 4 1751 378 126 3.00 376 124 3.03
Univariate FaceAll 1 14 131 520 40 13.00 1658 32 51.81
Univariate FacesUCR 1 11, 14 131 190 10 19.00 1940 110 17.64
Univariate FiftyWords 1 41, 50, 49, 42, 25, 34 270 438 12 36.50 423 32 13.22
Univariate Fish 1 4 463 154 21 7.33 146 29 5.03
Univariate FreezerRegularTrain 1 2 301 75 25 3.00 1425 1425 1.00
Univariate GestureMidAirD2 1 23, 26 360 192 16 12.00 120 10 12.00
Univariate GestureMidAirD3 1 3, 13 360 192 16 12.00 120 10 12.00
Univariate GesturePebbleZ1 1 2 455 112 20 5.60 147 25 5.88
Univariate GesturePebbleZ2 1 2 455 123 23 5.35 136 22 6.18
Univariate GunPoint 1 1 150 26 10 2.60 74 76 0.97
Univariate GunPointAgeSpan 1 2 150 68 22 3.09 160 156 1.03
Univariate Ham 1 1 431 57 17 3.35 54 51 1.06
Multivariate HandMovementDirection 10 backward 400 120 40 3.00 59 15 3.93
Univariate Haptics 1 1 1092 137 18 7.61 248 60 4.13
Univariate Herring 1 2 512 39 10 3.90 38 26 1.46
Univariate InlineSkate 1 1, 7 1882 80 20 4.00 446 104 4.29
Univariate ItalyPowerDemand 1 2 24 34 11 3.09 513 516 0.99
Univariate Lightning2 1 -1 637 40 20 2.00 33 28 1.18
Univariate Mallat 1 5, 1, 3 1024 41 14 2.93 1459 886 1.65
Univariate MedicalImages 1 8, 6 99 368 13 28.31 726 34 21.35
Univariate MelbournePedestrian 1 9 24 1040 98 10.61 2129 190 11.21
Univariate MiddlePhalanxOutlineCorrect 1 0 80 388 70 5.54 166 125 1.33
Univariate MixedShapesRegularTrain 1 5 1024 400 100 4.00 2111 314 6.72
Univariate MixedShapesSmallTrain 1 5 1024 80 20 4.00 2111 314 6.72
Multivariate NATOPS 24 2.0 51 150 30 5.00 150 30 5.00
Univariate PickupGestureWiimoteZ 1 10, 9 361 40 10 4.00 40 10 4.00
Univariate PigAirwayPressure 1 52, 51, 50, 49, 48 2000 94 10 9.40 188 20 9.40
Univariate PigArtPressure 1 52, 51, 50, 49, 48 2000 94 10 9.40 188 20 9.40
Univariate ProximalPhalanxOutlineAgeGroup 1 1 80 328 72 4.56 188 17 11.06
Univariate ProximalPhalanxTW 1 3 80 384 16 24.00 203 2 101.50
Multivariate RacketSports 6 squash_backhandboast 30 117 34 3.44 118 34 3.47
Univariate RefrigerationDevices 1 3 720 250 125 2.00 250 125 2.00
Univariate ScreenType 1 3 720 250 125 2.00 250 125 2.00
Multivariate SelfRegulationSCP2 7 positivity 1152 100 33 3.03 90 90 1.00
Univariate SemgHandGenderCh2 1 2 1500 150 50 3.00 390 210 1.86
Univariate SemgHandMovementCh2 1 6 1500 375 75 5.00 375 75 5.00
Univariate ShakeGestureWiimoteZ 1 10, 9 385 40 10 4.00 40 10 4.00
Univariate SmallKitchenAppliances 1 3 720 250 125 2.00 250 125 2.00
Univariate SmoothSubspace 1 3 15 100 50 2.00 100 50 2.00
Univariate Strawberry 1 1 235 394 73 5.40 238 132 1.80
Univariate Trace 1 2 275 79 21 3.76 71 29 2.45
Univariate TwoPatterns 1 2 128 763 237 3.22 2989 1011 2.96
Univariate Wine 1 2 234 30 10 3.00 27 27 1.00
Univariate Worms 1 5 900 164 17 9.65 69 8 8.62
Univariate WormsTwoClass 1 1 900 105 25 4.20 44 33 1.33
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